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Abstract

The influence of initial perturbation geometry and material properties on final fold geometry has been investigated using
finite-difference (FLAC) and finite-element (MARC) numerical models. Previous studies using these two different codes reported
very different folding behaviour although the material properties, boundary conditions and initial perturbation geometries were
similar. The current results establish that the discrepancy was not due to the different computer codes but due to the different
strain rates employed in the two previous studies (i.e. 107¢ s™! in the FLAC models and 10~'* s™! in the MARC models). As a
result, different parts of the elasto-viscous rheological field were being investigated. For the same material properties, strain rate
and boundary conditions, the present results using the two different codes are consistent. A transition in folding behaviour, from
a situation where the geometry of initial perturbation determines final fold shape to a situation where material properties control
the final geometry, is produced using both models. This transition takes place with increasing strain rate, decreasing elastic
moduli or increasing viscosity (reflecting in each case the increasing influence of the elastic component in the Maxwell elasto-
viscous rheology). The transition described here is mechanically feasible but is associated with very high stresses in the
competent layer (on the order of GPa), which is improbable under natural conditions. © 2000 Elsevier Science Ltd. All rights
reserved.

1. Introduction

Folds are some of the most commonly observed de-
formation structures in nature and the mechanics of
their development has been extensively studied over
the last half-century (e.g. Biot, 1959, 1961; Ramberg,
1960; Chapple, 1968; Sherwin and Chapple, 1968;
Hudleston, 1973; Cobbold, 1975; Treagus, 1973;
Fletcher, 1974, 1977, 1979; Smith, 1977, 1979, Johnson
and Fletcher, 1994). A comprehensive review can be
found in Price and Cosgrove (1990). From this large
body of work it is clear that the shape and wavelength
of folds potentially provide one of the few sources of
direct information on rock rheology under natural

* Corresponding author.

conditions. However, what is less well established is
how effectively this rheological control may be masked
by the shape and distribution of initial perturbations
in the layer surface. Analogue scale-model experiments
indicate that the influence may be quite strong, es-
pecially for isolated initial irregularities of finite ampli-
tude (e.g. Cobbold, 1975; Abbassi and Mancktelow,
1990, 1992). However, numerical modelling of single-
layer folding in elasto-viscous materials has so far pro-
duced contradictory results. Zhang et al. (1996), using
a finite-difference code (FLAC) observed that a clearly
defined dominant wavelength was rapidly established
that is largely independent of the initial perturbation’s
position and shape. In contrast, Mancktelow (1999),
using a finite-element code (MARC), obtained results
similar to the analogue models, i.e. with a dominant
influence of the initial perturbation geometry. This
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apparent contradiction is puzzling since the material
properties, boundary conditions and initial pertur-
bation geometry in the studies were directly compar-
able. At the same time, there is no obvious reason why
the different codes, both of which have been exten-
sively tested, should give different results.

In this comparative study, the discrepancy is
explained. The strain rate (107° s~') used by Zhang et
al. (1996) was significantly greater than the rate (10~
s~!) adopted by Mancktelow (1999). For the Maxwell
elasto-viscous model rheology employed in both these
earlier studies (and again here, for direct comparison),
the relative contribution of elasticity to the overall
rheological behaviour was correspondingly more im-
portant in the high strain rate experiments and single-
layer folding was being investigated in distinctly differ-
ent rheological regimes. In this study, models with the
same initial geometry, material properties and bound-
ary conditions were deformed at identical rates using
the two different codes (i.e. FLAC and MARC). The
finite-element and finite-difference codes return the
same results, except for one remaining discrepancy re-
lated to edge effects. The important issue of what actu-
ally controls fold shapes is also explored here by
investigating a wide range of the strain rate—viscosity—
elastic moduli-competence contrast space in the
models.

2. Description of the methods and models
2.1. Finite difference FLAC models

One of the two computer codes employed in this
study is the finite-difference code, FLAC (Fast Lagran-
gian Analysis of Continua, Cundall and Board 1988;
see also www.itascacg.com). This code wuses an
approach whereby the discretized equations are solved
by a dynamic relaxation scheme. FLAC incorporates a
very efficient strategy for the handling of volumetric
constraints and the relaxation technique is also robust
in modelling localization. The code has been success-
fully used to simulate a number of problems in struc-
tural geology (e.g. Hobbs et al., 1990; Ord, 1990;
McKinnon and Barra, 1998).

2.2. Finite element M ARC models

The other code employed is the commercial finite-el-
ement-modelling  package = MARC-Mentat  (see
www.marc.com). MARC represents the finite-element
program itself, whereas Mentat is the graphic user
interface for model generation and post-processing.
The program is specifically written for considering
non-linear problems, such as arise due to a combi-
nation of elasto-viscous behaviour and large strain.

Details of the code and methods are summarized in
Mancktelow (1999).

2.3. Model geometry and boundary conditions

The geometry of the model consists of a central
competent layer, embedded in a less competent matrix,
and initially seeded with either a series of periodic
small perturbations or a single isolated perturbation.
The layer thickness is 2 units, the model length 198
units and the width 128 units, identical to the two pre-
vious studies. For a symmetric isolated initial pertur-
bation at the centre of the layer, only one half of the
model needs to be calculated if asymmetric modes do
not occur in response to the symmetrical perturbation.
Test results for half and full finite-element models are
identical (Mancktelow 1999) and consequently only
one half was actually calculated in the finite-element
models of symmetrical isolated perturbations presented
here. Progressive shortening parallel to the layer was
achieved by velocity boundary conditions applied to
the edges of the model. In the FLAC models this vel-
ocity was kept constant (a constant ‘engineering strain
rate’, de/dt=[1/[,][d//dt], where e is elongation, t is
time and 1, is the initial layer length), whereas in the
MARC models the velocity was varied in inverse pro-
portion to the model length (a constant ‘logarithmic
strain rate’, de/d¢=[1/I][d//dt], where [ is the current
layer length). Any differences in the results due to this
slight discrepancy in boundary conditions should only
be developed at large total shortening and are not at
all apparent in the comparative models presented here.

In all cases, the x-velocity of the convergent sides
was prescribed by the above relationships and these
sides were thus maintained perfectly planar. The y-vel-
ocity of nodes along the same sides was generally
unconstrained, with the exception of the midpoint in
some models as outlined below. In the case of MARC
models with isolated perturbations, where the reflec-
tion symmetry was utilized and only one half of the
model considered, the x-velocity of the reflection plane
was set to zero and the y-velocity unconstrained. To
check the influence of boundary conditions, two sets
of finite-element models were performed. In the first
set (corresponding to those of Mancktelow, 1999), the
upper and lower sides of the model were left free. An
additional fixed y-velocity node was then required to
eliminate any potential for rigid body translation. For
isolated perturbations and cosine-form periodic pertur-
bations (inflection point at boundary) the mid-point of
the convergent side(s) was given a y-velocity of zero.
For sine-form periodic perturbations (hinge point at
boundary), it was the central point of the whole model
(which then lies on an inflection point of the initial
perturbation) for which the y-velocity was set to zero.
In the second set of experiments, the y-velocity of the
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upper and lower sides was constrained to be equal but
opposite in sign, so that the sides are forced to remain
planar. In this case, no additional y-velocity con-
straints are necessary and the zero y-velocity nodes at
the mid-point or centre of the models, as described for
the first set, are no longer introduced. For the model
dimensions considered here, the two sets of boundary
conditions produce identical results, as also noted by
Mancktelow (1999).

In the original study of Zhang et al. (1996) and in
most FLAC models presented here, a combination of
both sets of boundary constraints was employed, with
both the y-velocity of the mid-point on the converging
sides set to zero and the retreating upper and lower
sides maintained straight with equal and opposite y-
velocity. In this comparative study, FLAC and MARC
models were run with the full range of boundary con-
ditions outlined above. It was found that, for the same
imposed conditions, the two codes always produced
similar results. However, as discussed further below,
when the upper and lower plates are maintained
straight, there are clear differences in the final model
geometries for the two cases when the mid-point of the
converging sides is constrained or not. This boundary
condition effect is independent of the code employed
but does explain some specific differences in the results
of the original publications.

2.4. Material properties

A Maxwell elasto-viscous model for the material
rheology is adopted here for consistency with the stu-
dies of Mancktelow (1999) and Zhang et al. (1996).
This constitutive model is equivalent to a combination
of a compressible linear elastic element (spring) and an
incompressible Newtonian viscous element (dashpot)
in series (see Jaeger and Cook, 1979, p. 315; Ranalli
1987, p. 86). Since perfectly elastic behaviour is instan-
taneous but viscous resistance is time dependent, it fol-
lows that faster strain rates promote more elastic
behaviour in the system.

An important material parameter in these models
is the competence contrast (R) between the layer
and the matrix. For a Maxwell elasto-viscous ma-

Table 1

terial, R is defined here as the ratio of both vis-
cosity and Young’s modulus between the layer (1)
and the matrix (m), that is, R=n/nm = Ei/Emn, Where
n is the viscosity and E is Young’s modulus. For a
constant Poisson’s ratio (the wvalue 0.25 is used
throughout, see Table 1), this becomes R=#/jn,=
Ki/K,= Gy/Gy, where K and G are the bulk and shear
moduli. This follows the approach of the earlier paper
of Zhang et al. (1996) rather than Mancktelow (1999),
where ratios in elastic moduli were always =10 and
usually only 1 or 2. The material properties of the
models are summarised in Table 1 and will be related
to each model in the description below.

This definition of R has its limitations. Although
ratios in the effective viscosity of different rocks under
natural conditions could reach very high values, per-
haps exceeding four orders of magnitude (e.g. Carter
and Tsenn, 1987), the maximum ratio in Young’s
moduli is only on the order of 10 (e.g. Turcotte and
Schubert, 1982). However, the purpose here is to
model a similar contribution of viscosity and Young’s
modulus towards competence contrast. It is important
to emphasise that the present contribution represents a
quite restricted, qualitative exploration of the folding
behaviour of Maxwell materials within a restricted
subset of the relevant parameter space. To simplify the
problem, we have focussed on that part of the par-
ameter space characterised by equal elasticity and vis-
cosity ratios of the competent layer and of the
embedding material, for different bulk strain rates. In
fact, a complete characterisation of the parameter
space requires the explicit consideration of the internal
relaxation times of the plate and of the embedding ma-
terial as well. In doing so, an even richer array of
buckling behaviour is revealed in which more than one
wavelength is amplified. For instance, Miihlhaus et al.
(1998) have shown that there exist dramatically differ-
ent folding behaviours (involving the development of
multiple dominant wavelengths) depending on the
values of the relaxation times of the competent layer
and of the embedding medium, and on the amplifica-
tion rates of buckling instabilities. The complete spec-
trum of such behaviour for the buckling of Maxwell

Summary of the material properties of the models. R is competence contrast, £ is Young’s modulus (Pa) and 5 is viscosity (Pa s); Poisson’s ratio

is 0.25 in all the models, and / denotes layer and m denotes matrix

R =20 R =150 R =100 R =200
GFOUP rll/rlm El/Em nl/ﬂm El/Em rll/”lm El/Em ﬂl/”m E]/Em
1 2e20/1el19 7e10/3.5¢9 5e20/1el19 17.5¢10/3.5¢9 le21/1el9 3.5e11/3.5¢9 2e21/1el9 Tel1/3.5¢9
2 2e23/1e22 3.5e10/1.75e9 2e23/4e21 3.5e10/7e8 2e23/2e21 3.5e10/3.5¢8 2e23/1e21 3.5¢10/1.75e8
3 1e22/1e20 3.5e10/3.5e8
4 le23/le2l 3.5e10/3.5¢8
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materials needs to be considered in a future, more
extensive study.

3. FLAC finite-difference model results
3.1. Folding related to initial periodic perturbations

The initial, small periodic geometrical perturbations
imposed on the layer in the present FLAC models are
identical to those used by Zhang et al. (1996, fig. 1))
and Mancktelow, 1999. These comprise 16 full wave-
forms, each with an initial wavelength of six-times
layer thickness and with an initial amplitude 1/20 of
the layer thickness. This wavelength is smaller than the
theoretical dominant wavelength for purely viscous
materials (10.3 times layer thickness for R = 20; see
Fletcher, 1974, 1977; Mancktelow, 1999, fig. 5a).
Models were considered with R = 20, 50, 100 and 200
with various strain rates and constitutive parameters.

The first group of models uses the group 1 material
properties specified in Table 1. The properties and
boundary conditions are identical to those used by
Zhang et al. (1996). Fig. 1 gives the final fold geome-
tries of the models with a bulk shortening of 22-30%,
and bulk strain rates of 107" s7!, 1072 s7! and 1071°
s~!, respectively.

For the lowest strain rate (107'* s7"), the final fold
shapes of the four models with different R are clearly
different from those obtained by Zhang et al. (1996,

R=20

de/dt=10"s" 30%
I

de/dt=10"s" 30%
=~~~ _ ]
de/dt=10"s" 24%

av’alavaYe VoV oV

R=100
de/dt=10"s" 30%
NSRS
de/dt=10"s" 30%
De/dt=10"s" 24%

fig. 2a) for a much higher strain rate (107° s™'), but
are similar to those reported by Mancktelow (1999,
fig. 2) for the same strain rate of 107'* s~'. Both the
initial geometrical waveforms and their wavelength are
retained throughout the deformation. This implies that
hinge points do not migrate relative to material par-
ticles, as already pointed out by Mancktelow (1999),
and that the fold wavelength is entirely controlled by
the introduced perturbation. In other words, the Biot
dominant wavelength, as a function of layer thickness
and competence contrast, is not generated under these
conditions.

The amplitude of folds for these models is still quite
low at 30% bulk shortening. Our analyses show that,
at 30% bulk shortening stages, layer-parallel shorten-
ing accommodates about 94, 89, 87 and 85% of bulk
shortening in these models with R = 20, 50, 100 and
200, respectively, only a relatively small amount of
bulk shortening being accommodated by dynamic
buckling. As a result of this, layer length and thickness
decreases and increases linearly, respectively, with
increasing shortening. These observations indicate that
the dynamic fold growth rate is very small and that
homogeneous shortening is dominating these models,
consistent with theory for simpler, incompressible vis-
cous materials (e.g. Biot, 1961; Fletcher, 1974, 1977,
Smith, 1975) and the earlier finite-element models of
elasto-viscous materials (Mancktelow, 1999, Fig. 5b).

Increasing the strain rate has the effects of increasing
dynamic fold growth rate and decreasing homogenous

R=50
de/dt=10™s" 30%
= -
de/dt=10"s" 30%

[P g O T TS e

de/dt = 1040 S.l 24%

ANNNNAN

R =200
de/dt=10"s" 30%
o S SP U T T T WS-
de/dt=10"s" 30%
de/dt=10"s" 22%

ANNANANV NN\NANUSY

Fig. 1. Fold development in a single layer containing an initial periodic geometric perturbation, for models with group 1 properties as listed in
Table 1 and with various strain rates (de/d?) and competence contrasts (R); FLAC models.
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bulk shortening (Fig. 1). At a strain rate of 107'% s7!,

the results for higher competence contrasts (R = 50,
100 and 200) show clear departures from the smaller
strain-rate situation where homogeneous shortening is
dominating; now wavelengths related to the compe-
tence contrast start to develop. Increasing the strain
rate to 107'% s7! results in a further increase of fold
growth rates (Fig. 1). Dynamic fold amplification
starts to dominate and accommodate most of the
shortening, with new wavelengths (close to the Biot
wavelengths) fully developed and outpacing the growth
of the initial shorter wavelength. This is convergent
towards the results obtained by Zhang et al. (1996) for
a much higher strain rate. Such dynamic fold growth
(wavelength selection) does require the migration of
hinge points of initial small perturbations but this
occurs at a stage when limb dips are still small. Fold
growth in this process shows an ‘explosive’ develop-
ment, as widely described by previous workers (e.g.
Biot 1961, Ramsay 1967, Ramberg 1964).

The next group of models (Fig. 2) explores the
effects of increasing viscosity and decreasing elastic
moduli (Table 1, group 2) for the same initial geome-
try and with the strain rate fixed at 107'* s~!. This
represents a more explicit way to investigate the effect
of enhanced elastic behaviour on folding. The results
(Fig. 2) confirm that such a change in constitutive par-
ameters has a similar effect to increasing strain rate.
Fold development now is dominated by dynamic
amplification even at the low strain rate of 107'* s,
leading to the formation of new wavelengths that are
again close to the Biot wavelength for the relevant
competence contrast and layer thickness. Note that

de/dt=10"s" R=20 30%
NSNS S A =
de/dt=10"s" R =350 30%
de/dt=10"s" R=100 30%
NANNANANN
de/dt=10"s" R =200 30%

AN\NNN

Fig. 2. Final fold geometries for models with the group 2 properties
of Table 1 (increased viscosity and decreased elastic moduli), with
de/dr = 107" s7" and various values of R; FLAC models.

fold amplification is weaker at low competence con-
trast (R = 20) and the fold shape at 30% shortening
clearly bears the marks of the initial small pertur-
bations.

To explore further the influence of the wavelength
of initial perturbations, we have performed another
group of experiments for R = 50, in which the same
material properties as the first group (Table 1, group
1) are used but with a larger initial wavelength, close
to the relevant Biot wavelength (Fig. 3). At a low
strain rate of 107" s™! (Fig. 3a), fold growth rate
remains small until about 20% bulk shortening. Fold
growth is basically passive and bulk deformation is
mainly accommodated by homogenous shortening up
to this point, but then dynamic fold growth intensifies
by 30% bulk shortening. During the entire folding
process, the hinge points of initial perturbations
remain fixed at the same material locations. This is
similar to the situation for a smaller initial wavelength
(see Fig. 1, for models with a strain rate of 107'* s7").
However, the overall fold growth rate and final fold
amplitude are obviously greater, due to a favourable
initial wavelength (Fig. 3a). For the same initial geo-
metry, increasing the strain rate to 107'% s™! (Fig. 3b)
again has the effect of enhancing dynamic folding
growth. Much larger fold amplitude has been achieved
by 20% shortening, with layer parallel shortening
reduced significantly.

It should be mentioned that in the present FLAC
models and the models presented in Zhang et al.
(1996), the initial perturbation geometry is such that
an inflection point of the initial waveform train falls
on the model boundaries. This may be considered
equivalent to placing an even smaller geometrical per-
turbation at the ends of the layer. Mancktelow (1999)
raised the concern that this initial geometry may intro-
duce edge effects and additional wavelength com-
ponents and therefore be responsible for the reported
folding transition behaviour. We have tested the
models by modifying the model size slightly so that
hinge points fall on the model edge; the initial geome-
try remains the same for much of the model. The
models produced exactly the same results as those
shown in Fig. 1; strain rate and material mechanical
properties are the only controlling factors here. As dis-
cussed below, this remains the one important differ-
ence between the FLAC and finite-element MARC
models presented here.

3.2. Folding related to initial single isolated
perturbations

The single layer situation with an initial isolated per-
turbation has also been simulated here to investigate
fold propagation in the layer. The three types of single
perturbation employed by Zhang et al. (1996), termed



1516 Y. Zhang et al. | Journal of Structural Geology 22 (2000) 15111522

perturbations A, B and C, respectively, are used here.
They are generated using an equation y(x)=a cos(nx/b)
so that perturbations A, B and C have an initial
amplitude of 1.4 units and initial widths of 18, 38 and
80 units (9, 19 and 40 times layer thickness), respect-
ively. For an easy comparison with the study of
Mancktelow (1999), his perfect bell-shaped C-type
single perturbation (Abbassi and Mancktelow 1992) is
also modelled here, and termed perturbation D.

Fig. 4 shows the results of a group of models which
incorporate the group 1 material properties in Table 1
but only examine two competence contrasts (R = 20
and 100). From this summary figure, it is clear that
the amplification of the initial isolated perturbations
and fold propagation in the layer is different for differ-
ent strain rates. At 107'* s7!, the amplification of the
initial isolated perturbation is weak in all the models,
there is no fold hinge migration and, at least up to
30% shortening, there is no significant fold waveform
propagation along the layer (Fig. 4). The final geome-
try is largely controlled by the initial shape of the four
types of initial perturbation, combined with large
layer-parallel shortening. Competence contrast seems
only to affect the final amplitudes of the folds. These
features are consistent with those reported by Man-
cktelow (1999, fig 10) for the same strain rate. This is
particularly clear for perturbation D, which is identical
to Mancktelow’s bell-shaped C-type perturbation.

At a strain rate of 107'? s7!, all the models display
larger final fold amplitudes (Fig. 4), reflecting higher
growth rates. Some fold waveform propagation is also
observed in the models with R = 100. With an increase
in the strain rate to 107! s™! all the models show
waveform propagation along the layer on both sides of
the initial isolated perturbation, leading to the develop-

a)

de/dt=10"s"

ment of fold trains with the dominant wavelength.
Note that the evolution of C-type initial perturbations
is particularly interesting (Fig. 4). These perturbations
split into folds of smaller wavelength because the in-
itial wavelength of perturbation C is much greater
than the Biot dominant wavelength for the relevant
competence contrast and layer thickness. These results
converge towards the result of Zhang et al. (1996) for
a higher strain rate.

The last two models examine changes induced by
increasing viscosity and decreasing elastic moduli (i.e.
enhanced elasticity), with the strain rate fixed at 107'*
s~'; only perturbation B with R = 100 is simulated.
The first model incorporates the group 3 properties of
Table 1. The results (Fig. 5a) show that as a result of
the change in constitutive properties, fold waveform
propagation becomes visible at 20% bulk shortening
and is enhanced further at 30% shortening (compare
with Fig. 4). The second model uses an even higher
viscosity (Table 1, group 4). Now fold waveform
propagation (Fig. 5b) becomes clearly visible at 10%
shortening, and by 30% shortening, fold propagation
has led to the development of a fold train with the
dominant wavelength.

4. MARC finite-element model results
4.1. Folding related to initial periodic perturbations

For the same initial perturbation geometries, ma-
terial properties and boundary conditions, the MARC
finite-element code produce results that are effectively
identical to those obtained with the FLAC finite-differ-
ence code (e.g. compare Fig. 2d and Fig. 6a). As is

R=50

20%

L

l 30%

N NN NN

b)

de/dt=10"ss"

R=50 20%

~N\NNANNAN -

l 24%

N\NNANNANS -

Fig. 3. Final fold geometries for models with a larger initial perturbation wavelength (equal to the dominant wavelength for R = 50, calculated
using the equation of Fletcher 1977 for viscous materials); FLAC models. Group 1 properties of Table 1 for R = 50 are used with strain rates of

a) 107" s and b) 1071° s,
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now clear, the original apparent difference only reflects
the different strain-rates employed, and therefore the
transition to strongly elastic behaviour, as discussed in
detail below.

However, one significant difference in the results
does remain with regard to the influence of model
boundaries on fold geometry. As discussed in Man-
cktelow (1999), placing the planar model boundaries at
an inflection point of the wavetrain causes important
boundary effects (e.g. Fig. 1 for strain rates of 107'2
s7!: see also Mancktelow, 1999, Fig. 1), which in turn
introduces new spectral components, of small but finite
amplitude, into the system. With increasingly elastic
behaviour, the dynamic growth rate and rate of side-

ways propagation along the layer (e.g. see Fig. 4) of
these components is so high compared to the input
perturbation that they eventually dominate the overall
structure and produce a final ‘dominant wavelength’
shape independent of the initial periodic wavetrain
(Fig. 6a). This does not occur for finite-element models
with hinge points at the boundaries (Fig. 6¢c). The in-
itial perturbation wavelength in this example is much
smaller than the fastest growing dominant wavelength
and the growth rate is correspondingly low, with most
of the imposed bulk shortening accommodated by
layer-parallel shortening. This system is highly meta-
stable, since any spectral component closer to the
dominant wavelength would grow faster and in an ex-

R=20 R =100

de/dt=10™s" n 30%  de/dt=10"s" n 26%

g2 - 112 ol o

Pert. A de/dt=10 g 30% de/dt=10"s n 30%
ARANAARK AR AN

De/dt=10"s" P\ 30%
per g de/dt=10"s" ™\ 30% ~ dedt=10"s" '\ — 30%

de/dt=10"s" 30%

de/dt=10™s" 30% de/dt=10"s" —— 30%
de/dt=10"s" 30% de/dt=10"s" 30%
Pert. C
10 . 110 1
de/dt=10"s" 30% de/dt=10™s" 30%
———— \——
Pert. p 46/dt=10"s" 30% de/dt=10"s" 30%
de/dt=10"s" 26% de/dt=10"s" 2%

ANNY AN

Fig. 4. Fold development in a single layer with an initial isolated geometric perturbation; FLAC models. Final fold geometries are shown for the
models with Pert. A, B, C (cosine forms) and D (bell-shaped form) for different strain rates (de/d¢). Group 1 properties of Table 1 for R = 20
and 100 are used.
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ponential manner. This effect is exacerbated as the
maximum growth grate is increased with increasingly
elastic behaviour. The slightest divergence from a per-
fect sinusoidal perturbation would indeed result in the
rapid development of a wavetrain closer to the ‘domi-
nant wavelength’. Since there are always small differ-
ences in numerical truncation scheme between different
numerical modelling codes, it is quite possible that the
FLAC models do bifurcate in this specific case to still
develop the dominant wavelength, while the MARC
models do not. It is also true that the explicit scheme
used in FLAC generally promotes the continuation of
the initial perturbed mode of deformation of each
model, while MARC uses an implicit solver, so that
singularities (corresponding to secondary bifurcation)
may affect the performance of the algorithm if the de-
formation is indeed metastable.

In nature, perfectly sinusoidal initial irregularities
never occur. However, it is still important to establish
if individual Fourier components can be analysed inde-
pendently, at least for low fold amplitudes. This
approach allows growth rate curves to be determined,
for example, by Fourier transformation of folds devel-
oped from initial isolated bell-shaped perturbations
and analysis of the growth of the individual spectral
components (e.g. Mancktelow and Abbassi, 1992). It is
also a necessary justification for considering only a
half wavelength ‘unit cell’ of a perfectly periodic form,
as done in many previous numerical studies of folding
(e.g. Dieterich and Carter, 1969).

One minor difference in the final geometry of the
FLAC and MARC results in the original publications

a)

Pert. B& R=100
de/dt=10"s"

b) Pert. B & R = 100

w

30%

Fig. 5. Evolution of folding for models developed from Pert. B with
R = 100 but with increased viscosity and decreased elastic moduli in
comparison to Fig. 4, FLAC models. (a) Model incorporating the
group 3 properties of Table 1. (b) Model incorporating the group 4
properties of the Table 1.

is directly related to the different boundary constraints
applied. In the models of Zhang et al. (1996), both the
velocity of the upper and lower divergent sides and the
midpoints of the convergent sides were constrained,
whereas in the finite-element models of Mancktelow
(1999) either the midpoints or the divergent sides were
constrained, but never both. The double constraint
condition forces the ends of the layer to remain on the
midline (e.g. Figs. 1-5 and Fig. 6a), whereas for the
less constrained condition, a fully periodic geometry
develops in which a fold hinge occurs at the boundary
(Fig. 6b, Figs. 7 and 8). This is because the hinge axial
plane represents a natural symmetry plane in the final
fold structure and the model can be considered as a
segment of an infinite wavetrain.

4.2. Folding related to initial single isolated

perturbations

Again, it is readily established that the original
differences in the results of the earlier studies were not
due to the different codes but a result of the difference
in strain rates employed. Minor discrepancy could
arise occur due to the different shapes of the isolated
perturbations used in the two original studies. Man-
cktelow and Abbassi (1992) and Mancktelow (1999)
followed Biot et al. (1961) in using a bell-shaped per-
turbation following the equation y=b/[1+ (x/a)’],

Type 2 Viscoelastic Materials
R =200
Logarithmic Strain = -0.3

a) Inflection point at boundary with fixed mid-point

A VAVAVAD.

b) Inflection point at boundary with free mid-point

VAVAVAVEUAN

c) Hinge point at boundary

NANANAANAANAANAANAANAANAANAANANNN

Fig. 6. Finite-element models showing the influence of edge effects
on fold shapes for a bulk logarithmic strain of —0.3 (26% shorten-
ing), group 2 material properties (Table 1) and R = 200, for a con-
stant natural strain rate dg/dt=10""* s™!. The model parameters are
the same as in Fig. 2; MARC models. (a) The two side boundaries
of the model correspond to inflection points in the wavetrain, with
the midpoint of the layer fixed at the convergent boundaries and the
divergent upper and lower model boundaries constrained to be pla-
nar, the same as in Fig. 2. (b) No constraint was placed on the mid-
point of the layer at the convergent boundaries. (c) The wavetrain
was shifted a quarter wavelength so that the convergent side bound-
aries now correspond to hinge points. Other conditions are the same
as in (b).
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R=20

de/dt=10"14 571 ﬁ 30%
de/dt=10"12 51 ﬁ 30%

de/dt=10"10 571 26%

ANV \NAANV

Pert. B

R =100

de/dt=10"14 51 30%

de/dt=1012 571 30%

de/dt=1010 51 25%

\N\NAVN\NAANV

Fig. 7. Finite-element models of folding developed from an initial isolated perturbation, with parameters identical to Pert. B of Fig. 4, MARC

models.

where b is the amplitude and a determines the width
and therefore the spectral distribution. Zhang et al.
(1996) used a smoothed cosine form, as defined above.

Group 2 Material Properties
Strain Rate 1014 s
Logarithmic Strain = -0.3
Inflection Point at Boundary

a) viscoelastic layer - viscoelastic matrix E;/ Ey =n/ nm = 200

VAVAVAVAVAN

b) viscoelastic layer - viscoelastic matrix E;/ Eqy =200 1)/ m = 1

VA VA VAV VAN

c) elastic layer - viscoelastic matrix E; / E, = 200

VA VAV VA VAN

d) elastic layer - elastic matrix E} / Ep, = 200

VA VAV VA VAN

e) viscoelastic layer - viscoelastic matrix E;/ Ep, = 1 1/ m = 200

A S e VA

f) elastic layer - viscoelastic matrix E;/ Ep = 1

AV o S e VA

Fig. 8. Analysis of the influence of the different possible ratios in vis-
cosity and Young’s moduli on fold shape at a bulk shortening of —
0.3 logarithmic strain (26% shortening); MARC models. Values of
either 200:1 or 1:1 are employed. In (e) and (f), the behaviour of a
perfectly elastic layer in an elasto-viscous matrix is also investigated,
and in (d) the case of an elastic layer in an elastic matrix. The mag-
nitudes of the parameters correspond to the group 2 materials prop-
erties with R = 200 in Table 1. For ratios between layer and matrix
of 1:1, the value for the layer in Table 1 was used for both layer and
matrix.

Here both forms are used to establish a one-to-one
correspondence.

Comparison of the Pert. B model from Fig. 4 with
the finite-element models of Fig. 7 and the Pert. D
model of Fig. 4 with the corresponding Pert. C model
of figure 10 in Mancktelow (1999) for a strain-rate of
107" s7! clearly establishes that essentially the same
results are obtained. This is particularly clearly demon-
strated by the identical results for the strain rate of
10~'2 s! (Figs. 4 and 7).

5. Discussion

The transition in folding behaviour reported in
Zhang et al. (1996) and discussed in Mancktelow
(1999) is again produced in this study. This transition
reflects a change of folding behaviour from a situation
where the geometry of initial perturbation determines
final fold shape (no hinge migration) to a situation
where the geometry of final folds is controlled by ma-
terial mechanical properties, largely irrespective of in-
itial geometry (strong hinge migration). As is now
unequivocally established, this transition is a direct
result of the increasing influence of the elastic com-
ponent in the Maxwell elasto-viscous rheology
employed, either due to increasing strain rate or chan-
ging material properties. The important question is
whether this transition is to be expected under natural
conditions.

Fig. 8 presents the results of a sensitivity analysis
(using MARC) of the influence of the different possible
combinations of elastic and viscous parameters for the
group 2 materials (with R = 200) as used in Fig. 2.
The results demonstrate that it is the ratio in elastic
moduli that ultimately determines the periodic fold
shape developed for the group 2 properties (and im-
plicitly the models of Fig. 1 with strain rate of 107'°
s~1). The final shape for R = 200 in Fig. 2 is closely
approximated by a purely elastic model (Fig. 8d).
Including viscous behaviour allows the stresses to relax
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during folding, so that stress levels are not as high as
in the purely elastic case and the folds maintain their
shape during stress relaxation (e.g. if the boundaries
are held fixed at the end of the experiment). However,
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Fig. 9. Plots of strain and stress versus initial cumulative arc length
along the layer for the example of Fig. 6a (MARC models), which
corresponds to the FLAC model with R = 200 in Fig. 2. The plots
follow a line initially three quarters of the distance between the
centre of the layer and the upper edge. (a) Equivalent (or ‘effective’)
elastic and creep strain components (e.g. Ranalli, 1987, p. 76) at log-
arithmic strain=-0.04, when establishment of the dominant wave-
length different from the initial perturbation is well established. Note
that elastic strains predominate. (b) Normal stress ¢;; and mean
stress o, distribution along the same line, for bulk logarithmic
strain=-0.3 (the same as in Fig. 6). Note that compressive stress is
negative and that magnitudes are up to 2.5 GPa.

the elastic behaviour is dominant in actually establish-
ing the fold shape. This is also clear from Fig. 9a,
where it can be seen that most strain is elastic at the
time the periodic fold train is established. From
Fig. 9b, it can be seen that large compressive (inner
arc) and tensional (outer arc) stresses are associated
with the development of such folds (in this case corre-
sponding to Figs. 2 and 8a, with R = 200). Differential
and mean stresses are on the order of GPa, magni-
tudes increasing toward the inner and outer arcs of the
fold hinges (in other words, the traverse of Fig. 9b
does not represent maximal values). Indeed, this figure
is only an illustrative example. All the fold trains
developed above the transition to periodic forms in
Fig. 4 (i.e. with strain rate 107'° s7!) involve high
stresses on the order of many GPa. It is questionable
if such stress values could ever be attained in natural
folds, since failure, especially on the extending outer
fold arcs, would limit the ultimate strength of the
rock. Biot (1961) brought exactly the same argument
to suggest that the influence of elastic behaviour on
rock folding would only be limited. For the transition
to occur in nature, a model must be capable of simu-
lating the behaviour while maintaining stresses at rea-
listic levels, and further work is required to test this
possibility by exploring a wider material property-
strain rate space or other geologically-relevant consti-
tutive laws, especially those that involve yielding
before such high stresses arise.

The transition in the controlling fold mechanism for
elasto-viscous materials has recently also been analysed
by Schmalholz and Podladchikov, 1999. They propose
that the transition to more elastically influenced fold-
ing behaviour is not only determined by the stress in
the layer but also by the ratio between layer and
matrix viscosity. They define the controlling factor as
the ratio of the viscous dominant wavelength to the
elastic dominant wavelength for the particular material
properties. Since the smaller of these two wavelengths
in an elasto-viscous material will always amplify faster,
there will be a crossover in dominant buckling mech-
anism when this ratio is unity. The definition involves
both the viscosity ratio (to power 1/3) and the ratio of
the layer-parallel stress to the elastic shear modulus (to
power 1/2). For constant viscosity ratio, it follows that
increasing strain rate or deceasing magnitude of the
elastic modulus should lead to a transition to folding
dominated by elastic behaviour, as demonstrated here.
However, for constant strain rate and elastic modulus
in the layer, an increase in viscosity ratio can have the
same effect. This may be discernible in the modelling
results presented here (e.g. Fig. 1) and could be im-
portant in natural examples with a large layer—matrix
viscosity contrast. However, a direct comparison is not
possible, since Schmalholz and Podladchikov, 1999
consider an elasto-viscous layer in a viscous matrix,
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whereas in the current models all materials are elasto-
viscous and, for direct comparison with Zhang et al.
(1996), the ratio in the viscosities and the elastic
moduli between layer and matrix are always the same.

6. Conclusions

Numerical models of single-layer folds obtained
using the finite difference code (FLAC) are consistent
with those using the finite element code (MARC) for
the same material properties, strain rate and boundary
conditions. The differences in the results reported by
Zhang et al. (1996) and Mancktelow (1999) were not
due to the different computer codes used in the two
studies. The explanation lies in the different strain
rates employed in the two studies, namely 107¢ s™' by
Zhang et al. (1996) and 107" s=!' by Mancktelow
(1999), which meant that quite different parts of the
elasto-viscous rheological field were being investigated.
This finding removes any uncertainty about possible
major effects due to different computer codes on mod-
elling results.

The transition in folding behaviour reflecting the dis-
crepancy in results between the two previous studies
can be reproduced with both codes either by increasing
the strain rate or decreasing the elastic moduli, equiv-
alent to increasing the elastic component to the ma-
terial response. Increasingly elastic behaviour results in
a faster growth rate and the ‘explosive’ development of
a strongly periodic wavetrain, as is well seen in the ex-
periments with an initial isolated perturbation. This
folding process involves strong hinge migration.

A sensitivity analysis of material parameters between
layer and matrix for models above the transition in
folding behaviour establishes that the major control on
the geometry of the periodic forms is the ratio in elas-
tic moduli. The geometry developed is the same as
would be obtained for an elastic layer in an elastic
matrix. This result reflects the original definition of R
in Zhang et al. (1996), namely as the constant ratio in
both viscosity and Young’s moduli between layer and
matrix. At high values of R and strain rate, it is the
strong contrast in elastic properties that determines the
fold geometry above the transition. This is mechani-
cally feasible but not necessarily realistic for natural
rocks because of the associated very high stresses
developed in the competent layer (on the order of
GPa). Such stresses would be difficult to attain in
natural rocks due to the limiting effects of rupture,
particularly on the outer arc of folds.

One discrepancy between the modelling results still
remains with regard to perfectly periodic initial pertur-
bations. This difference is entirely related to whether
the lateral model boundaries are at an initial hinge or
inflection point. For both cases, FLAC models show a

transition with increasingly elastic behaviour to folding
at near dominant wavelength, with associated hinge
migration at low amplitudes. In contrast, MARC
models only show a comparable transition with hinge
migration when the boundaries are at an initial inflec-
tion point. In the case of a perfectly sinusoidal initial
perturbation with hinges at the model boundaries,
there is no hinge migration and the final fold wave-
length is entirely controlled by the initial perturbation.
This discrepancy has important implications for
designing other numerical models. In the case of per-
fectly periodic initial perturbations, the symmetry of
the system is such that in principle only a single quar-
ter wavelength needs to be modelled if hinge migration
is not possible. On the contrary, if hinge migration at
low amplitudes is possible, only initial perturbations
with initial wavelength close to the theoretical domi-
nant wavelength may be analysed in this way.
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